Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients
نویسندگان
چکیده
We propose a level set approach for elliptic inverse problems with piecewise constant coefficients. The geometry of the discontinuity of the coefficient is represented implicitly by level set functions. The inverse problem is solved using a variational augmented Lagrangian formulation with total variation regularization of the coefficient. The corresponding Euler Lagrange equation gives the evolution equation for the level set functions and the constant values of the coefficients. We use a multiple level set representation which allows the coefficient to have multiple constant regions. Knowledge of the exact number of regions is not required, only an upper bound is needed. Numerical experiments show that the method can recover coefficients with rather complicated geometries of discontinuities under moderate amount of noise in the observation data. The method is also robust with respect to the initial guess for the geometry of the coefficient discontinuities.
منابع مشابه
A piecewise constant level set method for elliptic inverse problems
We apply a piecewise constant level set method to elliptic inverse problems. The discontinuity of the coefficients is represented implicitly by a piecewise constant level set function, which allows to use one level set function to represent multiple phases. The inverse problem is solved using a variational penalization method with the total variation regularization of the coefficients. An opera...
متن کاملIdentification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization
We propose several formulations for recovering discontinuous coefficients in elliptic problems by using total variation (TV) regularization. The motivation for using TV is its wellestablished ability to recover sharp discontinuities. We employ an augmented Lagrangian variational formulation for solving the output-least-squares inverse problem. In addition to the basic outputleast-squares formul...
متن کاملA Binary Level Set Model for Elliptic Inverse Problems with Discontinuous Coefficients
In this paper we propose a variant of a binary level set approach for solving elliptic problems with piecewise constant coefficients. The inverse problem is solved by a variational augmented Lagrangian approach with a total variation regularisation. In the binary formulation, the seeked interfaces between the domains with different values of the coefficient are represented by discontinuities of...
متن کاملPiecewise Constant Level Set Method for In- terface Problems
We apply the Piecewise Constant Level Set Method (PCLSM) to interface problems, especially for elliptic inverse and multiphase motion problems. PCLSM allows using one level set function to represent multiple phases, and the interfaces are represented implicitly by the discontinuity of a piecewise constant level set function. The inverse problem is solved using a variational penalization method ...
متن کاملIdentification of Discontinuous Coefficients from Elliptic Problems Using Total Variation Regularization
We propose several formulations for recovering discontinous coeecient of elliptic problems by using total variation (TV) regularization. The motivation for using TV is its well-established ability to recover sharp discontinuities. We employ an augmented Lagrangian variational formulation for solving the output-least-squares inverse problem. In addition to the basic output-least-squares formulat...
متن کامل